Model-based machine learning for the recovery of lateral dose profiles of small photon fields in magnetic field

Author:

Looe Hui Khee,Blum Isabel,Schönfeld Ann-BrittORCID,Tekin TubaORCID,Delfs Björn,Poppe Björn

Abstract

Abstract Objective. To investigate the feasibility to train artificial neural networks (NN) to recover lateral dose profiles from detector measurements in a magnetic field. Approach. A novel framework based on a mathematical convolution model has been proposed to generate measurement-less training dataset. 2D dose deposition kernels and detector lateral fluence response functions of two air-filled ionization chambers and two diode-type detectors have been simulated without magnetic field and for magnetic field B = 0.35 and 1.5 T. Using these convolution kernels, training dataset consisting pairs of dose profiles D x , y and signal profiles M x , y were computed for a total of 108 2D photon fluence profiles ψ ( x , y ) (80% training/20% validation). The NN were tested using three independent datasets, where the second test dataset has been obtained from simulations using realistic phase space files of clinical linear accelerator and the third test dataset was measured at a conventional linac equipped with electromagnets. Main results. The convolution kernels show magnetic field dependence due to the influence of the Lorentz force on the electron transport in the water phantom and detectors. The NN show good performance during training and validation with mean square error reaching a value of 1e-6 or smaller. The corresponding correlation coefficients R reached the value of 1 for all models indicating an excellent agreement between expected D x , y and predicted D pred x , y . The comparisons between D x , y and D pred x , y using the three test datasets resulted in gamma indices (1 mm/1% global) <1 for all evaluated data points. Significance. Two verification approaches have been proposed to warrant the mathematical consistencies of the NN outputs. Besides offering a correction strategy not existed so far for relative dosimetry in a magnetic field, this work could help to raise awareness and to improve understanding on the distortion of detector’s signal profiles by a magnetic field.

Funder

Federal Ministry for Economic Affairs and Climate Action

German Research Foundation

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3