Can dose convolution modelling explain bath and shower effects in rat spinal cord?

Author:

Blake Steve WORCID

Abstract

Abstract Objective. ‘Bath and shower’ effects were first seen in proton irradiations of rat spinal cord, where a low dose ‘bath’ reduced the smaller field ‘shower’ dose needed for limb paralysis giving the appearance of sensitisation of the cord or disproportionate response. This was difficult to reconcile with existing tissue complication models. The purpose of this investigation is to explore a different approach using a dose convolution algorithm to model the 50% isoeffect endpoint. Approach. Bath and shower dose distributions were convolved with Gaussian functions with widths specified by the σ parameter. The hypothesis was that the maximum value from the convolved distributions was constant for isoeffect across the modelled scenarios. A simpler field length dependent relative biological effectiveness (FLRBE) approach was also used for a subset of the data which gave results independent of σ. Main results. The maximum values from the convolved distributions were constant within ±17% across the bath and shower experiments for σ = 3.5 mm, whereas the maximum dose varied by a factor of four. The FLRBE results were also within ±14% confirming the validity of the dose convolution approach. Significance. A simple approach using dose convolution modelling of the 50% isotoxicity gave compelling consistency with the full range of bath and shower results, while the FLRBE approach confirmed the results for the symmetric field data. Convolution modelling and the effect of time interval were consistent with a signalling factor diffusion mechanism such as the ‘bystander effect’. The results suggest biological effectiveness is reduced for very small field sizes, requiring a higher isoeffect dose. By implication, the bath dose does not sensitise the cord to the shower dose; when biological effectiveness is accounted for, a small increase in the bath dose requires a significantly larger reduction in shower dose for isoeffect.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3