Implementation of a double scattering nozzle for Monte Carlo recalculation of proton plans with variable relative biological effectiveness

Author:

Fjæra Lars FredrikORCID,Indelicato Daniel J,Stokkevåg Camilla H,Muren Ludvig P,Hsi Wen C,Ytre-Hauge Kristian SORCID

Abstract

Abstract A constant relative biological effectiveness (RBE) of 1.1 is currently used in clinical proton therapy. However, the RBE varies with factors such as dose level, linear energy transfer (LET) and tissue type. Multiple RBE models have been developed to account for this biological variation. To enable recalculation of patients treated with double scattering (DS) proton therapy, including LET and variable RBE, we implemented and commissioned a Monte Carlo (MC) model of a DS treatment nozzle. The main components from the IBA nozzle were implemented in the FLUKA MC code. We calibrated and verified the following entities to experimental measurements: range of pristine Bragg peaks (PBPs) and spread-out Bragg peaks (SOBPs), energy spread, lateral profiles, compensator range degradation, and absolute dose. We recalculated two patients with different field setups, comparing FLUKA vs. treatment planning system (TPS) dose, also obtaining LET and variable RBE doses. We achieved good agreement between FLUKA and measurements. The range differences between FLUKA and measurements were for the PBPs within ±0.9 mm (83% ⩽ 0.5 mm), and for SOBPs ±1.6 mm (82% ⩽ 0.5 mm). The differences in modulation widths were below 5 mm (79% ⩽ 2 mm). The differences in the distal dose fall off (D80%–D20%) were below 0.5 mm for all PBPs and the lateral penumbras diverged from measurements by less than 1 mm. The mean dose difference (RBE = 1.1) in the target between the TPS and FLUKA were below 0.4% in a three-field plan and below 1.4% in a four-field plan. A dose increase of 9.9% and 7.2% occurred when using variable RBE for the two patients, respectively. We presented a method to recalculate DS proton plans in the FLUKA MC code. The implementation was used to obtain LET and variable RBE dose and can be used for investigating variable RBE for previously treated patients.

Funder

Trond Mohn Foundation

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3