High-efficient Bloch simulation of magnetic resonance imaging sequences based on deep learning

Author:

Huang Haitao,Yang QinqinORCID,Wang Jiechao,Zhang Pujie,Cai ShuhuiORCID,Cai Congbo

Abstract

Abstract Objective. Bloch simulation constitutes an essential part of magnetic resonance imaging (MRI) development. However, even with the graphics processing unit (GPU) acceleration, the heavy computational load remains a major challenge, especially in large-scale, high-accuracy simulation scenarios. This work aims to develop a deep learning-based simulator to accelerate Bloch simulation. Approach. The simulator model, called Simu-Net, is based on an end-to-end convolutional neural network and is trained with synthetic data generated by traditional Bloch simulation. It uses dynamic convolution to fuse spatial and physical information with different dimensions and introduces position encoding templates to achieve position-specific labeling and overcome the receptive field limitation of the convolutional network. Main results. Compared with mainstream GPU-based MRI simulation software, Simu-Net successfully accelerates simulations by hundreds of times in both traditional and advanced MRI pulse sequences. The accuracy and robustness of the proposed framework were verified qualitatively and quantitatively. Besides, the trained Simu-Net was applied to generate sufficient customized training samples for deep learning-based T 2 mapping and comparable results to conventional methods were obtained in the human brain. Significance. As a proof-of-concept work, Simu-Net shows the potential to apply deep learning for rapidly approximating the forward physical process of MRI and may increase the efficiency of Bloch simulation for optimization of MRI pulse sequences and deep learning-based methods.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Science and Technology Project of Fujian Province of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3