Mitigating misalignment in MRI-to-CT synthesis for improved synthetic CT generation: an iterative refinement and knowledge distillation approach

Author:

Zhou Leyuan,Ni Xinye,Kong Yan,Zeng Haibin,Xu MuchenORCID,Zhou Juying,Wang Qingxin,Liu Cong

Abstract

Abstract Objective. Deep learning has shown promise in generating synthetic CT (sCT) from magnetic resonance imaging (MRI). However, the misalignment between MRIs and CTs has not been adequately addressed, leading to reduced prediction accuracy and potential harm to patients due to the generative adversarial network (GAN)hallucination phenomenon. This work proposes a novel approach to mitigate misalignment and improve sCT generation. Approach. Our approach has two stages: iterative refinement and knowledge distillation. First, we iteratively refine registration and synthesis by leveraging their complementary nature. In each iteration, we register CT to the sCT from the previous iteration, generating a more aligned deformed CT (dCT). We train a new model on the refined 〈dCT, MRI〉 pairs to enhance synthesis. Second, we distill knowledge by creating a target CT (tCT) that combines sCT and dCT images from the previous iterations. This further improves alignment beyond the individual sCT and dCT images. We train a new model with the 〈tCT, MRI〉 pairs to transfer insights from multiple models into this final knowledgeable model. Main results. Our method outperformed conditional GANs on 48 head and neck cancer patients. It reduced hallucinations and improved accuracy in geometry (3% ↑ Dice), intensity (16.7% ↓ MAE), and dosimetry (1% ↑ γ 3%3mm). It also achieved <1% relative dose difference for specific dose volume histogram points. Significance. This pioneering approach for addressing misalignment shows promising performance in MRI-to-CT synthesis for MRI-only planning. It could be applied to other modalities like cone beam computed tomography and tasks such as organ contouring.

Funder

Project of State Key Laboratory of Radiation Medicine and Protection of Soochow University

China Postdoctoral Science Foundation

Science and Technology Demonstration Project of Social Development of Jiangsu Province

Natural Science Foundation of Shanghai Municipality

2023 Gusu Talent Program

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3