Deep learning and radiomics-based approach to meningioma grading: exploring the potential value of peritumoral edema regions

Author:

Zhang Zhuo,Miao Ying,Wu JiXuan,Zhang Xiaochen,Ma Quanfeng,Bai Hua,Gao Qiang

Abstract

Abstract Objective. To address the challenge of meningioma grading, this study aims to investigate the potential value of peritumoral edema (PTE) regions and proposes a unique approach that integrates radiomics and deep learning techniques. Approach. The primary focus is on developing a transfer learning-based meningioma feature extraction model (MFEM) that leverages both vision transformer (ViT) and convolutional neural network (CNN) architectures. Additionally, the study explores the significance of the PTE region in enhancing the grading process. Main results. The proposed method demonstrates excellent grading accuracy and robustness on a dataset of 98 meningioma patients. It achieves an accuracy of 92.86%, precision of 93.44%, sensitivity of 95%, and specificity of 89.47%. Significance. This study provides valuable insights into preoperative meningioma grading by introducing an innovative method that combines radiomics and deep learning techniques. The approach not only enhances accuracy but also reduces observer subjectivity, thereby contributing to improved clinical decision-making processes.

Funder

National Natural Science Foundation of China

Tianjin Research Innovation Project for Postgraduate Students

Publisher

IOP Publishing

Reference55 articles.

1. Layer normalization;Ba,2016

2. Prognostic characterization of higher-grade meningiomas: a histopathological score to predict progression and outcome;Bertero;J. Neuropathology Exp. Neurol.,2019

3. The diagnostic value of radiomics-based machine learning in predicting the grade of meningiomas using conventional magnetic resonance imaging: a preliminary study;Chen;Front. Oncol.,2019

4. Automatic meningioma segmentation and grading prediction: a hybrid deep-learning method;Chen;J. Personalized Med.,2021

5. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer;Cui;Eur. Radiol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3