Abstract
Abstract
Objective. X-ray scatter leads to signal bias and degrades the image quality in Computed Tomography imaging. Conventional real-time scatter estimation and correction methods include the scatter kernel superposition (SKS) methods, which approximate x-ray scatter field as a convolution of the scatter sources and scatter propagation kernels to reflect the spatial spreading of scatter x-ray photons. SKS methods are fast to implement but generally suffer from low accuracy due to the difficulties in determining the scatter kernels. Approach. To address such a problem, this work describes a new scatter estimation and correction method by combining the concept of SKS methods and convolutional neural network. Unlike conventional SKS methods which estimate the scatter amplitude and the scatter kernel based on the value of an individual pixel, the proposed method generates the scatter amplitude maps and the scatter width maps from projection images through a neural network, from which the final estimated scatter field is calculated based on a convolution process. Main Results. By incorporating physics in the network design, the proposed method requires fewer trainable parameters compared with another deep learning-based method (Deep Scatter Estimation). Both numerical simulations and physical experiments demonstrate that the proposed SKS-inspired convolutional neural network outperforms the conventional SKS method and other deep learning-based methods in both qualitative and quantitative aspects. Significance. The proposed method can effectively correct the scatter-related artifacts with a SKS-inspired convolutional neural network design.
Funder
Original exploration project recommended by experts of the special project of National Natural Science Foundation of China
Science and Technology Program of Guangdong
National R&D Program for Major Research Instruments of Natural Science Foundation of China
State’s Key Project of Research and Development Plan
National Natural Science Foundation under Grant
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献