Scatter correction for cone-beam CT via scatter kernel superposition-inspired convolutional neural network

Author:

Zhuo Xu,Lu Yuchen,Hua Yuexuan,Liu Hanxi,Zhang YikunORCID,Hao Shilei,Wan Lin,Xie Qingguo,Ji Xu,Chen Yang

Abstract

Abstract Objective. X-ray scatter leads to signal bias and degrades the image quality in Computed Tomography imaging. Conventional real-time scatter estimation and correction methods include the scatter kernel superposition (SKS) methods, which approximate x-ray scatter field as a convolution of the scatter sources and scatter propagation kernels to reflect the spatial spreading of scatter x-ray photons. SKS methods are fast to implement but generally suffer from low accuracy due to the difficulties in determining the scatter kernels. Approach. To address such a problem, this work describes a new scatter estimation and correction method by combining the concept of SKS methods and convolutional neural network. Unlike conventional SKS methods which estimate the scatter amplitude and the scatter kernel based on the value of an individual pixel, the proposed method generates the scatter amplitude maps and the scatter width maps from projection images through a neural network, from which the final estimated scatter field is calculated based on a convolution process. Main Results. By incorporating physics in the network design, the proposed method requires fewer trainable parameters compared with another deep learning-based method (Deep Scatter Estimation). Both numerical simulations and physical experiments demonstrate that the proposed SKS-inspired convolutional neural network outperforms the conventional SKS method and other deep learning-based methods in both qualitative and quantitative aspects. Significance. The proposed method can effectively correct the scatter-related artifacts with a SKS-inspired convolutional neural network design.

Funder

Original exploration project recommended by experts of the special project of National Natural Science Foundation of China

Science and Technology Program of Guangdong

National R&D Program for Major Research Instruments of Natural Science Foundation of China

State’s Key Project of Research and Development Plan

National Natural Science Foundation under Grant

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3