Machine learning-based event recognition in SiFi Compton camera imaging for proton therapy monitoring

Author:

Kazemi Kozani MajidORCID,Magiera AndrzejORCID

Abstract

Abstract Objective. Online monitoring of dose distribution in proton therapy is currently being investigated with the detection of prompt gamma (PG) radiation emitted from a patient during irradiation. The SiPM and scintillation Fiber based Compton Camera (SiFi-CC) setup is being developed for this aim. Approach. A machine learning approach to recognize Compton events is proposed, reconstructing the PG emission profile during proton therapy. The proposed method was verified on pseudo-data generated by a Geant4 simulation for a single proton beam impinging on a polymethyl methacrylate (PMMA) phantom. Three different models including the boosted decision tree (BDT), multilayer perception (MLP) neural network, and k-nearest neighbour (k-NN) were trained using 10-fold cross-validation and then their performances were assessed using the receiver operating characteristic (ROI) curves. Subsequently, after event selection by the most robust model, a software based on the List-Mode Maximum Likelihood Estimation Maximization (LM-MLEM) algorithm was applied for the reconstruction of the PG emission distribution profile. Main results. It was demonstrated that the BDT model excels in signal/background separation compared to the other two. Furthermore, the reconstructed PG vertex distribution after event selection showed a significant improvement in distal falloff position determination. Significance. A highly satisfactory agreement between the reconstructed distal edge position and that of the simulated Compton events was achieved. It was also shown that a position resolution of 3.5 mm full width at half maximum (FWHM) in distal edge position determination is feasible with the proposed setup.

Funder

Polish National Science Centre

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3