Abstract
Abstract
Objective. Online monitoring of dose distribution in proton therapy is currently being investigated with the detection of prompt gamma (PG) radiation emitted from a patient during irradiation. The SiPM and scintillation Fiber based Compton Camera (SiFi-CC) setup is being developed for this aim. Approach. A machine learning approach to recognize Compton events is proposed, reconstructing the PG emission profile during proton therapy. The proposed method was verified on pseudo-data generated by a Geant4 simulation for a single proton beam impinging on a polymethyl methacrylate (PMMA) phantom. Three different models including the boosted decision tree (BDT), multilayer perception (MLP) neural network, and k-nearest neighbour (k-NN) were trained using 10-fold cross-validation and then their performances were assessed using the receiver operating characteristic (ROI) curves. Subsequently, after event selection by the most robust model, a software based on the List-Mode Maximum Likelihood Estimation Maximization (LM-MLEM) algorithm was applied for the reconstruction of the PG emission distribution profile. Main results. It was demonstrated that the BDT model excels in signal/background separation compared to the other two. Furthermore, the reconstructed PG vertex distribution after event selection showed a significant improvement in distal falloff position determination. Significance. A highly satisfactory agreement between the reconstructed distal edge position and that of the simulated Compton events was achieved. It was also shown that a position resolution of 3.5 mm full width at half maximum (FWHM) in distal edge position determination is feasible with the proposed setup.
Funder
Polish National Science Centre
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献