ReconU-Net: a direct PET image reconstruction using U-Net architecture with back projection-induced skip connection

Author:

Hashimoto FumioORCID,Ote KiboORCID

Abstract

Abstract Objective. This study aims to introduce a novel back projection-induced U-Net-shaped architecture, called ReconU-Net, based on the original U-Net architecture for deep learning-based direct positron emission tomography (PET) image reconstruction. Additionally, our objective is to visualize the behavior of direct PET image reconstruction by comparing the proposed ReconU-Net architecture with the original U-Net architecture and existing DeepPET encoder–decoder architecture without skip connections. Approach. The proposed ReconU-Net architecture uniquely integrates the physical model of the back projection operation into the skip connection. This distinctive feature facilitates the effective transfer of intrinsic spatial information from the input sinogram to the reconstructed image via an embedded physical model. The proposed ReconU-Net was trained using Monte Carlo simulation data from the Brainweb phantom and tested on both simulated and real Hoffman brain phantom data. Main results. The proposed ReconU-Net method provided better reconstructed image in terms of the peak signal-to-noise ratio and contrast recovery coefficient than the original U-Net and DeepPET methods. Further analysis shows that the proposed ReconU-Net architecture has the ability to transfer features of multiple resolutions, especially non-abstract high-resolution information, through skip connections. Unlike the U-Net and DeepPET methods, the proposed ReconU-Net successfully reconstructed the real Hoffman brain phantom, despite limited training on simulated data. Significance. The proposed ReconU-Net can improve the fidelity of direct PET image reconstruction, even with small training datasets, by leveraging the synergistic relationship between data-driven modeling and the physics model of the imaging process.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. [PET] 8. Recent Progress on AI Image Reconstruction in PET;Japanese Journal of Radiological Technology;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3