Divergent trends in irrigation-water withdrawal and consumption over mainland China

Author:

Zhang LingORCID,Zheng Donghai,Zhang Kun,Chen Hao,Ge Yingchun,Li Xin

Abstract

Abstract Knowledge of both irrigation-water withdrawal (IWW) and consumption (IWC, i.e. the evapotranspiration loss of applied irrigation water) is critical to sustainable water use and management. However, IWW and IWC are not well differentiated and an integrated analysis of their changes and causes is still lacking. Here we aim to close this gap and investigate the trends and drivers of IWW and IWC over mainland China using the logarithmic mean Divisia index approach and multivariate regression and fixed-effects panel regression models. We find that IWW decreased at a rate of −1.3 km3yr−1 (or −0.4% yr−1) while IWC increased at a rate of 2.9 km3 yr−1 (or 2.4% yr−1) from 1999 to 2013, albeit both showed upward trends from 1982 to 1999. The reduction in IWW was due to the decreased water-withdrawal intensity (WWI) (i.e. IWW per unit area), while the increase in IWC was mainly due to the irrigated area expansion. We find opposite trends in IWW and IWC in about half of the Chinese provinces, with IWW decreasing and IWC increasing in most cases. Changes in irrigation efficiency (IE, defined as the ratio of IWC to IWW) and climatic factors explain a large proportion of the variance in WWI and water-consumption intensity (i.e. IWC per unit area). IE presents a strong negative correlation with WWI but a positive correlation with water-consumption intensity. The improved IE makes a nonnegligible contribution (∼20%) to the irrigated area expansion, especially in water-scarce regions. The strong positive linkage between IE and IWC together with the significant rise in IWC with increasing IE suggest that the paradox of IE (i.e. higher IE tends to increase water consumption) has manifested in mainland China. Our findings highlight the importance of considering both IWW and IWC changes as well as farmer’s behavior adjustments in water resource management.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3