Synergistic impacts of wintertime regional snow anomalies in the Northern Hemisphere on the summer rainfall pattern in China

Author:

Yao HaoxinORCID,Zhao LiangORCID,Shen Xinyong,Ding YihuiORCID,Wang JingsongORCID,Xiao ZiniuORCID

Abstract

Abstract Changes in winter snow cover in the Northern Hemisphere (NH) could have a profound impact on mid-latitude weather. Previous studies have focused on the role of regional, e.g. Eurasian or Tibetan, snow cover in summer precipitation anomaly, without considering the synergistic impacts of hemispheric wintertime snow. In this study, we find that the dominant pattern of the NH winter overall snow cover anomaly with a synergistic impact, has a stronger cross-seasonal association with the China’s summer rainfall pattern than regional snow cover anomaly. We summarize three synergistic impact paths of regional snow cover. One is extratropical path, that is the westerlies are affected by less snow in Europe through the snow-soil moisture-atmospheric feedback, and the influence is strengthened by less snow in Mongolia through enhanced temperature anomalies. The second is subtropical path, that is the meridional thermal difference anomaly caused by more snow anomaly on the Tibetan Plateau is strengthened by less Mongolian snow and then impacts the behavior of the upper-tropospheric westerly jet. Third, concurrently, more North American snow enhances the above two synergistic influence paths via the Circumglobal Teleconnection pattern. These three paths can be simultaneously reflected in the associated circulations of the first mode of NH snow cover. Their synergistic impacts eventually influence the meridional East Asia-Pacific pattern circulation anomalies in summer, leading to increased precipitation in the Yangtze River Basin. The cross-seasonal influences of synergistic effects of multiple regional snow anomalies can be identified by CMIP6 multi-model ensembles, particularly the impact of European snow cover.

Funder

National Natural Science Foundation of China

Guangdong Major Project of Basic and Applied Basic Research

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3