First estimation of hourly full-coverage ground-level ozone from Fengyun-4A satellite using machine learning

Author:

Gao Ling,Zhang Han,Yang Fukun,Tan WangshuORCID,Wu Ronghua,Song Yi

Abstract

Abstract Ground-level ozone (O3), renowned for its adverse impacts on human health and crop production, has garnered significant attention from governmental and public sectors. To address the limitations posed by sparse and uneven ground-level O3 observations, this study proposes an innovative method for hourly full-coverage ground-level O3 estimation using machine learning. Meteorological data from National Centers for Environmental Prediction global forecasting system, satellite data from Fengyun-4 A(FY-4 A) and Ozone Monitoring Instrument, emission inventory from Multi-resolution Emission Inventory for China, and other auxiliary data are utilized as input variables, while ground-based O3 observations serve as the response variable. The method is applied on a monthly basis across China for the year 2022, resulting in the generation of an hourly full-coverage high-resolution (4 km) ground-level O3 estimation, termed ML-derived-O3. Cross-validation results demonstrate the robustness of ML-derived-O3 yielding a coefficient of determination (R 2) of 0.96 (0.91) for sample-based (site-based) evaluations and a root-mean-square error (RMSE) of 9.22 (13.65) µg m−3. However, the date-based evaluation is less satisfactory due to the imbalanced training data, resulting from the pronounced daily variations in ground-level O3 concentrations. Nevertheless, the seasonal and hourly ML-derived-O3 exhibits high prediction accuracy, with R 2 values surpassing 0.95 and RMSE remaining below 7.5 µg m−3. This study marks a significant milestone as the first successful attempt to obtain hourly full-coverage ground-level O3 data across China. The diurnal variation of ML-derived-O3 demonstrates high consistency with ground-based observations, irrespective of clear or cloudy days, effectively capturing ground-level O3 pollution exposure events. This novel estimation method will be employed to establish a long-term high spatial-temporal resolution ground-level O3 dataset, which holds valuable applications for air pollution monitoring and environmental health research in future endeavors.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference54 articles.

1. Spatiotemporal modeling of ozone levels in quebec (canada): a comparison of kriging, land-use regression (LUR), and combined bayesian maximum entropy–LUR approaches;Adam-Poupart;Environ. Health Perspect.,2014

2. Stratospheric ozone, UV radiation, and climate interactions;Bernhard;Photochem. Photobiol. Sci.,2023

3. Observed relationships of ozone air pollution with temperature and emissions;Bloomer;Geophys. Res. Lett.,2009

4. SCIAMACHY: mission objectives and measurement modes;Bovensmann;J. Atmos. Sci.,1999

5. GOME-2-Metop’s second-generation sensor for operational ozone monitoring;Callies;ESA Bull.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3