Shrub growth in the Alps diverges from air temperature since the 1990s

Author:

Francon LoïcORCID,Corona Christophe,Till-Bottraud Irène,Choler Philippe,Roussel Erwan,Carlson Bradley Z,Morin Samuel,Girard Brigitte,Stoffel Markus

Abstract

Abstract In the European Alps, air temperature has increased almost twice as much as the global average over the last century and, as a corollary, snow cover duration has decreased substantially. In the Arctic, dendroecological studies have evidenced that shrub growth is highly sensitive to temperature—this phenomenon has often been linked to shrub expansion and ecosystem greening. Yet, the impacts of climate change on mountain shrub radial growth have not been studied with a comparable level of detail so far. Moreover, dendroecological studies performed in mountain environments did not account for the potential modulation and/or buffering of global warming impacts by topography, despite its possible crucial role in complex alpine environments. To fill this gap, we analyzed a network of eight sites dominated by the dwarf shrub Rhododendron ferrugineum. The sites selected for analysis represent the diversity of continentality, elevation and slope aspect that can be found across the French Alps. We quantified annual radial increment growth for 119 individuals, assembled meteorological reanalyzes specifically accounting for topographic effects (elevation, slope and aspect) and assessed climate-growth relations using a mixed modeling approach. In agreement with a vast majority of dendroecological work conducted in alpine and arctic environments, we find that the number of growing degree days during the snow-free period snow-free growing degree days (SFGDDs) is a strong and consistent driver of R. ferrugineum growth across all sites since 1960 until the late 1980s. We also document a marked loss of sensitivity of radial growth to increasing SFGDD since the 1990s, with this decoupling being more pronounced at the driest sites. Our observations of the spatial and temporal variability of shrub sensitivity to limiting factors can be compared to the ‘divergence’ problem observed in tree-ring series from circumpolar and alpine regions and, accordingly, sheds light on possible future trajectories of alpine shrub growth in response to ongoing climate change.

Funder

Austrian Science Fund

Centre National de la Recherche Scientifique

Agence Nationale de la Recherche

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3