A dynamic-leaf light use efficiency model for improving gross primary production estimation

Author:

Huang Lingxiao,Yuan Wenping,Zheng Yi,Zhou Yanlian,He Mingzhu,Jin Jiaxin,Huang Xiaojuan,Chen Siyuan,Liu Meng,Guan Xiaobin,Jiang Shouzheng,Lin XiaofengORCID,Li Zhao-Liang,Tang Ronglin

Abstract

Abstract Accurate quantification of terrestrial gross primary production (GPP) is integral for enhancing our understanding of the global carbon budget and climate change. The light use efficiency (LUE) model is undoubtedly the most extensively applied method for GPP estimation. However, the two-leaf (TL)-LUE model using a ‘potential’ sunlit leaf area index (LAIsu) can separate a portion of LAIsu even when the canopy does not receive any direct radiation, leading to the underestimation of GPP under cloudy and overcast days. Here, we developed a dynamic-leaf (DL) LUE model by introducing an ‘effective’ LAIsu to improve GPP estimation, which considers the comprehensive contribution of LAIsu when the canopy does and does not receive direct radiation. In particular, the new model decreases LAIsu to zero when direct radiation reaches zero. Our evaluation at eight ChinaFLUX sites showed that (1) the DL-LUE model outperformed the most well-known BL-LUE (namely, the MOD17 GPP algorithm) and TL-LUE models in reproducing the daily in situ GPP, especially at four forest sites [reducing the root mean square error (RMSE) from 1.74 g C m−2 d−1 and 1.53 g C m−2 d−1 to 1.36 g C m−2 d−1 and increasing the coefficient of determination (R 2) from 0.74 and 0.79–0.82, respectively]. Moreover, the improvements were particularly pronounced at longer temporal scales, as indicated by the RMSE decreasing from 29.32 g C m−2 month−1 and28.11 g C m−2 month−1 to 25.81 g C m−2 month−1 at a monthly scale and from 231.82 g C m−2 yr−1 and 221.60 g C m−2 yr−1–200.00 g C m−2 yr−1 at a yearly scale; (2) the DL-LUE model mitigated the systematic underestimation of the in situ GPP by both the TL-LUE and BL-LUE models when the clearness index (CI) was below 0.5, as indicated by the Bias reductions of 0.25 g C m−2 d−1 and 0.46 g C m−2 d−1, respectively; and (3) the contributions of the shaded GPP to the total GPP from the DL-LUE model were higher by 0.07–0.16 than those from the TL-LUE model across the eight ChinaFLUX sites. The proposed parsimonious and effective DL-LUE model not only has great potential for improving global GPP estimations but also provides a more mechanism-based approach for partitioning the total GPP into its shaded and sunlit components.

Funder

Key Project of Innovation LREIS

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3