Environmental and health consequences of shore power for vessels calling at major ports in India

Author:

Lathwal PriyankORCID,Vaishnav ParthORCID,Morgan M GrangerORCID

Abstract

Abstract To reduce local air pollution, many ports in developed countries require berthed ships to use shore-based electricity instead of burning diesel to meet their electricity requirement for loads such as lights, cargo-handling equipment, and air conditioning. The benefits of this strategy in developing countries remain understudied. Based on government data for all major ports in India, we find that switching from high-sulfur fuel to shore power reduces hoteling emissions of particulate matter (PM2.5) by 88%; SO2 by 39%; NO x by 85%; but increases CO2 emissions by 12%. Switching from low-sulfur fuel reduces hoteling emissions of PM2.5 by 46% and NO x by 84% but increases SO2 emissions by 240% and CO2 emissions by 17%. The lifetime cost savings from the switch to electricity are $73 M for high-sulfur fuel and $370 M for low-sulfur fuel. We estimate that switching from high-sulfur fuel to shore power might avoid at most a couple of dozen premature deaths each year, whereas switching from low-sulfur fuel could lead to a slight increase in premature mortality. Therefore, policymakers must first clean up power generation for shore power to be a viable strategy to improve air quality in Indian port cities.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference81 articles.

1. Assocham India Online,2017

2. India begins roll-out of countrywide on-shore power programme;Bankes-Hughes,2018

3. Carl Moyer memorial air quality standards attainment program,2020a

4. Shore power for ocean-going vessels,2020b

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3