Assessing urban water-energy nexus characteristics in China and the US

Author:

Wu XiaomengORCID,Liu Yi,Yu Zongqi,Jiang JitongORCID,Wang ChunyanORCID,Zhao Bu

Abstract

Abstract The Water-Energy Nexus (WEN) provides a comprehensive concept for the cooperative management of resources. Although the WEN system in cities is intricately connected to socioeconomic activities, relationship between WEN and economic systems remains understudied. This study introduces a tri-dimensional Nexus Pressure Index (NPI) to assess the pressure on WEN system. Gross Domestic Product (GDP) per capita and city tiers in the urban agglomeration were used to assess the relationship between the characteristics of WEN and economic system. We conducted a case study of 296 cities in China and 1330 counties in the United States from 2012 to 2019. During the 9 year study period, on average, pressure on WEN system have relieved by 22% in China and 27% in the United States, measured by NPI. Cities with most ideal characteristics (low pressure in all dimensions) rank merely in the middle of all eight classes, with GDP per capita 74% and 85% of the highest-GDP-per-capita class in China and the US respectively. Well-performing WEN system does not yield best economic outcomes. High water pressure correlates with better economic performance in the US, while high-energy-pressure cities had GDP per capita about 50% and 70% of the class with highest GDP per capita in China and the US, respectively, suggesting stronger economic constraints from energy stress. Urban agglomeration analysis revealed a negative relationship between WEN and economic performance. NPI in emerging cities is 0.6–1 lower than NPI in regionally-central cities in China, while 0.2–0.5 lower in the US. These results underscore the contradiction between preferred WEN characteristics and higher economic performance, and underpin the resource curse hypothesis at city-level in the two considered giants. A sustainable approach to harmonize WEN and economic system is in urgent need.

Funder

National Key R&D Programmes of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference54 articles.

1. An optimal integrated power and water supply planning model considering water-energy-emission nexus;Afsari Mamaghani;Energy Convers. Manage.,2023

2. Sectoral contributions to surface water stress in the coterminous United States;Averyt;Environ. Res. Lett.,2013

3. County population totals: 2010–2019;Census Bureau,2023

4. Urban energy–water nexus: a network perspective;Chen;Appl. Energy,2016

5. CEC released the annual report on development of China’s power industry 2022;China Electricity council,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3