Predicting future UK nighttime urban heat islands using observed short-term variability and regional climate projections

Author:

Doger de Speville Charlotte,Seviour William J MORCID,Lo Y T EuniceORCID

Abstract

Abstract By 2050, 68% of the world’s population and 90% of the UK’s population are estimated to be living in urban areas. It is widely acknowledged that urban areas tend to be warmer than rural areas (the urban heat island (UHI) effect), and that increased summer temperatures increase morbidity and mortality. It is therefore important to know how the UHI intensity will change in the future. Recent work has used observed daily UHI-temperature relationships to suggest that the UHI intensity may decrease under warming temperatures. Here we analyse the ability of the regional UK Climate Projections, UKCP18-regional, to model the summer nighttime UHI intensity of ten UK cities. When compared to HadUK-Grid observational data, we find that the model accurately simulates both the mean magnitude of the UHI intensities and the daily relationship between urban and rural temperature. In particular, in 9 of the 10 cities, the model and observational data both show a decrease in UHI intensity with warmer temperature over the 1980–2020 period analysed. We then analyse the correlation between the projected future UHI intensities using UKCP18-regional and those inferred from the historical daily UHI-temperature relationships. We find that this relationship is not statistically significant and that the model-projected change in UHI intensity is greater than the change inferred from the historical relationship for all cities analysed. We conclude that using short-term variability to predict future UHI change, as proposed by some recent work, may not be appropriate. Our results motivate further research to understand processes impacting UHI changes on different timescales and in different regions.

Funder

Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference41 articles.

1. Energy saving potentials and air quality benefits of urban heat island mitigation;Akbari,2005

2. The health effects of hotter summers and heat waves in the population of the United Kingdom: a review of the evidence;Arbuthnott;Environ. Health,2017

3. The joint UK land environment simulator (JULES), model description–part 1: energy and water fluxes;Best;Geosci. Model Dev.,2011

4. Waste heat: the dominating root cause of current global warming;Bian;Environ. Syst. Res.,2020

5. Sky view factor analysis of street canyons and its implications for daytime intra‐urban air temperature differentials in high‐rise, high‐density urban areas of Hong Kong: a GIS‐based simulation approach;Chen;Int. J. Climatol.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3