Multi-annual predictions of the frequency and intensity of daily temperature and precipitation extremes

Author:

Delgado-Torres CarlosORCID,Donat MarkusORCID,Soret Albert,Gonzalez-Reviriego Nube,Bretonnière Pierre-Antoine,Ho An-ChiORCID,Pérez-Zanón NúriaORCID,Samsó Margarida,Doblas-Reyes Francisco J

Abstract

Abstract The occurrence of extreme climate events in the coming years is modulated by both global warming and internal climate variability. Anticipating changes in frequency and intensity of such events in advance may help minimize the impact on climate-vulnerable sectors and society. Decadal climate predictions have been developed as a source of climate information relevant for decision-making at multi-annual timescales. We evaluate the multi-model forecast quality of the CMIP6 decadal hindcasts in predicting a set of indices measuring different characteristics of temperature and precipitation extremes for the forecast years 1-5. The multi-model ensemble skillfully predicts the temperature extremes over most land regions, while the skill is more limited for precipitation extremes. We further compare the prediction skill for these extreme indices to the skill for mean temperature and precipitation, finding that the extreme indices are predicted with lower skill, particularly those representing the most extreme days. We find only small and region-dependent improvements from model initialization in comparison to historical forcing simulations. This systematic evaluation of decadal hindcasts is essential when providing a climate service based on decadal predictions so that the user is informed on the trustworthiness of the forecasts for each specific region and extreme event.

Funder

Horizon Europe ASPECT project

AXA Research Fund

Spanish Ministry for Science and Innovation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3