Protecting rivers by integrating supply-wastewater infrastructure planning and coordinating operational decisions

Author:

Dobson BarnabyORCID,Mijic AnaORCID

Abstract

Abstract Placing water quality in rivers at the centre of water infrastructure planning and management is an important objective. In response there has been a range of ‘whole system’ analyses. Few studies, however, consider both abstraction (water removed from rivers) and discharge (water returned) to inform the future planning of water systems. In this work we present a systems approach to analysing future water planning options where system development prioritises the water quality of the receiving river. We provide a theoretical demonstration by integrating water supply and wastewater infrastructure, and downstream river water quality, on an open-source, stylised, systems model for London, UK, at a citywide scale. We show that models which consider either supply or wastewater separately will underestimate impacts of effluent on the water quality, in some cases by amounts that would require £1 billion worth of infrastructure equivalent to mitigate. We highlight the utility of the systems approach in evaluating integrated water infrastructure planning using both socio-economic and environmental indicators. Through this approach we find unintended impacts from planning options on downstream river quality; including benefits from water demand management and rainwater harvesting, and costs from wastewater reuse. Finally, we present a novel management planning option between supply and wastewater, which we refer to as Abstraction-Effluent Dilution (AED), that is, to reduce river abstractions during high precipitation events to dilute untreated sewer spills. The AED option is found to provide up to £200 million worth of equivalent infrastructure in river quality improvements and has minimal impact on the reliability of water supply while requiring only a change in operational decision making. This proof-of-concept study highlights that seeing our water systems differently with this holistic approach could fundamentally change the way we think about future water infrastructure planning so that it works both for people and the environment.

Funder

Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3