Attribution of production-stage methane emissions to assess spatial variability in the climate intensity of US natural gas consumption

Author:

Burns Diana,Grubert EmilyORCID

Abstract

Abstract Although natural gas is often viewed as a commodity fuel with limited variability due to standardization for pipeline transportation, life cycle impacts of natural gas vary substantially. Greenhouse gas (GHG) intensity is one of the most policy-relevant environmental characteristics of natural gas, particularly as decarbonization efforts proceed. Given that natural gas is mostly methane, a powerful GHG, methane emissions from the natural gas system contribute substantially to the GHG intensity of natural gas. Research has established that methane emissions from natural gas systems are climatically relevant and higher than long understood, in part due to variation in production-stage emissions by basin. This work combines recent estimates of basin-level US production-stage methane emissions, data on US natural gas production, consumption, and trade, and a spatial evaluation of pipeline connections between production basins and consumer states to generate first-order estimates of the production-stage methane emissions intensity of natural gas consumed in the United States. Although natural gas is a commodity product, the environmental footprint of a given unit of natural gas varies based on its origin and infrastructural needs. We find that production-stage methane emissions intensity of delivered natural gas by state varies from 0.9% to 3.6% (mass methane emitted from natural gas production sites per mass methane withdrawn). These production-stage emissions add 16%–65% (global warming potential (GWP)-100; 38%–157%, GWP-20) to combustion carbon dioxide emissions. Other sources of life cycle methane emissions downstream of production can be similar in magnitude. Natural gas consumed in Arizona, Kansas, and New Mexico has the highest estimated production-stage methane emissions intensity, largely due to reliance on high-emission basins. Limitations include emissions-related data gaps and sensitivity to allocation approaches, but results demonstrate decision-relevant variability in the GHG impact of natural gas.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3