Disentangling the causes of the 1816 European year without a summer

Author:

Schurer Andrew PORCID,Hegerl Gabriele CORCID,Luterbacher JürgORCID,Brönnimann StefanORCID,Cowan TimORCID,Tett Simon F BORCID,Zanchettin DavideORCID,Timmreck ClaudiaORCID

Abstract

Abstract The European summer of 1816 has often been referred to as a ‘year without a summer’ due to anomalously cold conditions and unusual wetness, which led to widespread famines and agricultural failures. The cause has often been assumed to be the eruption of Mount Tambora in April 1815, however this link has not, until now, been proven. Here we apply state-of-the-art event attribution methods to quantify the contribution by the eruption and random weather variability to this extreme European summer climate anomaly. By selecting analogue summers that have similar sea-level-pressure patterns to that observed in 1816 from both observations and unperturbed climate model simulations, we show that the circulation state can reproduce the precipitation anomaly without external forcing, but can explain only about a quarter of the anomalously cold conditions. We find that in climate models, including the forcing by the Tambora eruption makes the European cold anomaly up to 100 times more likely, while the precipitation anomaly became 1.5–3 times as likely, attributing a large fraction of the observed anomalies to the volcanic forcing. Our study thus demonstrates how linking regional climate anomalies to large-scale circulation is necessary to quantitatively interpret and attribute post-eruption variability.

Funder

H2020 European Research Council

European Research Council

European Union

Bundesministerium für Bildung und Forschung

Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3