Learning and flexibility for water supply infrastructure planning under groundwater resource uncertainty

Author:

Fletcher SarahORCID,Strzepek Kenneth,Alsaati Adnan,de Weck Olivier

Abstract

Abstract Water supply infrastructure planning in groundwater-dependent regions is often challenged by uncertainty in future groundwater resource availability. Many major aquifer systems face long-term water table decline due to unsustainable withdrawals. However, many regions, especially those in the developing world, have a scarcity of groundwater data. This creates large uncertainties in groundwater resource predictions and decisions about whether to develop alternative supply sources. Developing infrastructure too soon can lead to unnecessary and expensive irreversible investments, but waiting too long can threaten water supply reliability. This study develops an adaptive infrastructure planning framework that applies Bayesian learning on groundwater observations to assess opportunities to learn about groundwater availability in the future and adapt infrastructure plans. This approach allows planners in data scarce regions to assess under what conditions a flexible infrastructure planning approach, in which initial plans are made but infrastructure development is deferred, can mitigate the risk of overbuilding infrastructure while maintaining water supply reliability in the face of uncertainty. This framework connects engineering options analysis from infrastructure planning to groundwater resources modeling. We demonstrate a proof-of-concept on a desalination planning case for the city of Riyadh, Saudi Arabia, where poor characterization of a fossil aquifer creates uncertainty in how long current groundwater resources can reliably supply demand. We find that a flexible planning approach reduces the risk of over-building infrastructure compared to a traditional static planning approach by 40% with minimal reliability risk (<1%). This striking result may be explained by the slow-evolving nature of groundwater decline, which provides time for planners to react, in contrast to more sudden risks such as flooding where tradeoffs between cost and reliability risk are heightened. This Bayesian approach shows promise for many civil infrastructure domains by providing a method to quantify learning in environmental modeling and assess the effectiveness of adaptive planning.

Funder

National Science Foundation

Center for Complex Engineering Systems at KACST and MIT

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference54 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3