Historical diffusion of nuclear, wind and solar power in different national contexts: implications for climate mitigation pathways

Author:

Vinichenko VadimORCID,Jewell JessicaORCID,Jacobsson Johan,Cherp AlehORCID

Abstract

Abstract Climate change mitigation requires rapid expansion of low-carbon electricity but there is a disagreement on whether available technologies such as renewables and nuclear power can be scaled up sufficiently fast. Here we analyze the diffusion of nuclear (from the 1960s), as well as wind and solar (from the 1980–90s) power. We show that all these technologies have been adopted in most large economies except major energy exporters, but solar and wind have diffused across countries faster and wider than nuclear. After the initial adoption, the maximum annual growth for nuclear power has been 2.6% of national electricity supply (IQR 1.3%–6%), for wind − 1.1% (0.6%–1.7%), and for solar − 0.8% (0.5%–1.3%). The fastest growth of nuclear power occurred in Western Europe in the 1980s, a response by industrialized democracies to the energy supply crises of the 1970s. The European Union (EU), currently experiencing a similar energy supply shock, is planning to expand wind and solar at similarly fast rates. This illustrates that national contexts can impact the speed of technology diffusion at least as much as technology characteristics like cost, granularity, and complexity. In the Intergovernmental Panel on Climate Change mitigation pathways, renewables grow much faster than nuclear due to their lower projected costs, though empirical evidence does not show that the cost is the sole factor determining the speed of diffusion. We demonstrate that expanding low-carbon electricity in Asia in line with the 1.5 °C target requires growth of nuclear power even if renewables increase as fast as in the most ambitious EU’s plans. 2 °C-consistent pathways in Asia are compatible with replicating China’s nuclear power plans in the whole region, while simultaneously expanding renewables as fast as in the near-term projections for the EU. Our analysis demonstrates the usefulness of empirically-benchmarked feasibility spaces for future technology projections.

Funder

H2020 European Research Council

Stiftelsen för Miljöstrategisk Forskning

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3