Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest

Author:

Kang YanghuiORCID,Ozdogan Mutlu,Zhu Xiaojin,Ye Zhiwei,Hain Christopher,Anderson Martha

Abstract

Abstract Crop yield estimates over large areas are conventionally made using weather observations, but a comprehensive understanding of the effects of various environmental indicators, observation frequency, and the choice of prediction algorithm remains elusive. Here we present a thorough assessment of county-level maize yield prediction in U.S. Midwest using six statistical/machine learning algorithms (Lasso, Support Vector Regressor, Random Forest, XGBoost, Long-short term memory (LSTM), and Convolutional Neural Network (CNN)) and an extensive set of environmental variables derived from satellite observations, weather data, land surface model results, soil maps, and crop progress reports. Results show that seasonal crop yield forecasting benefits from both more advanced algorithms and a large composite of information associated with crop canopy, environmental stress, phenology, and soil properties (i.e. hundreds of features). The XGBoost algorithm outperforms other algorithms both in accuracy and stability, while deep neural networks such as LSTM and CNN are not advantageous. The compositing interval (8-day, 16-day or monthly) of time series variable does not have significant effects on the prediction. Combining the best algorithm and inputs improves the prediction accuracy by 5% when compared to a baseline statistical model (Lasso) using only basic climatic and satellite observations. Reasonable county-level yield foresting is achievable from early June, almost four months prior to harvest. At the national level, early-season (June and July) prediction from the best model outperforms that of the United States Department of Agriculture (USDA) World Agricultural Supply and Demand Estimates (WASDE). This study provides insights into practical crop yield forecasting and the understanding of yield response to climatic and environmental conditions.

Funder

National Aeronautics and Space Administration

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3