Weather pattern conducive to the extreme summer heat in North China and driven by atmospheric teleconnections

Author:

Xie TiejunORCID,Ding TingORCID,Wang Ji,Zhang Yingjuan,Gao HuiORCID,Zhao Xiulan,Zhao LiangORCID

Abstract

Abstract Extreme summer heat can have severe socioeconomic impacts and has occurred frequently in North China in recent years, most notably in June–July 2023, when North China experienced the most widespread, persistent, and high-intensity extreme heat on record. Here, typical weather patterns covering North China and its surrounding areas were classified into seven types based on the Cost733class package, and the weather pattern type 4 (T4), characterized by the strengthened ridge and anticyclone anomaly in northeastern China, was found as the most favorable for the occurrence of extreme summer heat in North China (NCSH). Diagnostic and wave activity flux analyses indicate that the Eurasian teleconnection (EAT) pattern from the atmosphere and the Victoria mode (VM) from the ocean are the top two dominant climate drivers of the T4 weather pattern. The empirical models constructed based on the EAT and the VM can effectively simulate the number of days of the T4 weather pattern and the NCSH, respectively. Our results suggest that, with the help of the seasonal forecast from climate models, the EAT and the VM can be used to predict the number of days of the T4 weather pattern and the NCSH for the coming summer, enabling us to protect human health and reduce its socioeconomic impacts through proactive measures in advance.

Funder

the Young Elite Scientists Sponsorship Program by BAST

the Joint Research Project for Meteorological Capacity Improvement

the Guangdong Major Project of Basic and Applied Basic Research

National Natural Science Foundation of China

the Special Program for Innovation and Development of China Meteorological Administration

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3