Deep in the Sierra Nevada critical zone: saprock represents a large terrestrial organic carbon stock

Author:

Moreland KimberORCID,Tian ZhiyuanORCID,Berhe Asmeret AsefawORCID,McFarlane Karis JORCID,Hartsough Peter,Hart Stephen CORCID,Bales Roger,O’Geen Anthony T

Abstract

Abstract Large uncertainty remains in the spatial distribution of deep soil organic carbon (OC) storage and how climate controls belowground OC. This research aims to quantify OC stocks, characterize soil OC age and chemical composition, and evaluate climatic impacts on OC storage from the soil surface through the deep critical zone to bedrock. These objectives were carried out at four sites along a bio-climosequence in the Sierra Nevada, California. On average, 74% of OC was stored below the A horizon, and up to 30% of OC was stored in saprock (friable weakly weathered bedrock). Radiocarbon, spectroscopic, and isotopic analyses revealed the coexistence of very old organic matter (OM) (mean radiocarbon age = 20 300 years) with relatively recent OM (mean radiocarbon age = 4800 years) and highly decomposed organic compounds with relatively less decomposed material in deep soil and saprock. This co-mingling of OM suggests OC is prone to both active cycling and long-term protection from degradation. In addition to having direct effects on OC cycling, climate indirectly controls deep OC storage through its impact on the degree of regolith weathering (e.g. thickening). Although deep OC concentrations are low relative to soil, thick saprock represents a large, previously unrealized OC pool.

Funder

UC Lab Fees Research Fellowship to K. Moreland

Lawrence Livermore National Laboratory’s graduate student training fellowship to K. Moreland

U.S National Science Foundation

Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science Award

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3