Drivers of multi-decadal nitrate regime shifts in a large European catchment

Author:

Wachholz AlexanderORCID,Jawitz James WORCID,Büttner OlafORCID,Jomaa SeifeddineORCID,Merz RalfORCID,Yang SoohyunORCID,Borchardt DietrichORCID

Abstract

Abstract Long-term monitoring shows evidence of persistent changes in the magnitude and timing of the seasonal pattern of nitrate concentrations in streams, with possibly grave effects on aquatic ecosystems. Seasonal patterns of stream nutrient concentrations are determined by a complex interplay of inputs, transport, and turnover. Over multi-decadal periods, each of these factors may change due to socio-economic factors such as consumption patterns, governance regimes, or technological control measures. Here we test the hypothesis that observed multi-decadal changes in stream nitrate seasonality could be explained by changes in the relative importance of catchment nutrient sources over time. We analyze 66 years of shifting nitrate seasonality in a large, central-European river (Elbe) during a period of significant socio-political changes (1954–2019), with correspondingly significant changes in the sources of anthropogenic nitrate emissions. We develop a mixed-source succession model to test how the multi-decadal evolution of the composition of nitrate sources (point and diffuse) influences in-stream seasonality. We show that the in-stream nitrate seasonality of the River Elbe changed significantly from a weak seasonal pattern with peak concentrations during summer in the 1950s to a strong seasonal pattern with peak concentrations during winter in the 1990s. We link these shifts to a succession of technical and political developments which influence the contribution of point and diffuse sources over time. Such shifts in seasonal concentration patterns can significantly impact the macronutrient (carbon, nitrogen, phosphorus) ratios in rivers, which in turn highly affect the health of aquatic ecosystems.

Funder

Helmholtz International Research School TRACER

Bundesministerium für Bildung und Forschung

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3