Do water savings persist? Using survival models to plan for long-term responses to extreme drought

Author:

Bolorinos JoseORCID,Rajagopal Ram,Ajami Newsha KORCID

Abstract

Abstract Water utilities must maintain reliable service in a world where climate shocks and other socio-economic and health stressors are likely to disrupt water availability and demand more frequently. Understanding short- and long-term customer responses to these salient events is critical for infrastructure planning and capital investment. Although the short-term demand impacts of extreme droughts and related policy measures have been studied extensively, less is known about how these impacts persist—especially when driven by public awareness, media coverage, or other external drivers. Here, we introduce a novel approach combining survival models and change detection to assess water demand conservation ‘survival’ and rebound, using this method to analyze residential water demand in Costa Mesa, California after the state’s record-breaking 2012–2016 drought. We find that, of 54% of customers with detected savings in 2014–2015, just 25% rebounded to prior consumption levels after 5 years, implying mean conservation survival of 8 years. Survival was greater in young and politically progressive neighborhoods, smaller in residences with occupancy changes, and not significantly associated with water-efficiency rebates. Comparing the 2012–2016 drought to California’s milder 2007–2009 drought shows no evidence that drought severity associated with water savings persistence. This study presents an innovative approach to measure impacts of various stressors and their long-term water demand impacts. Our method enables utilities to more accurately discern structural changes in water demand, better informing strategic planning for short- and long-term water reliability and security.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3