Balancing food security and environmental sustainability by optimizing seasonal-spatial crop production in Bangladesh

Author:

Li ManORCID,Guo Zhe,Zhang WeiORCID

Abstract

Abstract The intensification of crop production has been identified as one of the major drivers of environmental degradation. While significant advances could still be made with more widespread adoption of sustainable intensification technologies that address the agronomic efficiency of nitrogen fertilizers, the dynamic use of agricultural land across seasons and associated crop-specific responses to fertilizer applications have so far been largely overlooked. This paper explores the potential for improving the economic-environmental performance of crop production through spatially integrated modeling and optimization, as applied to Bangladesh. Results show that per-billion-Taka nitrogen loss from soil would decline by 83% from the baseline level through factoring in crop-specific, seasonal and spatial variations in crop nitrogen-use efficiency and nitrogen transport. The approach should complement other policy analysis and decision-support tools to assess alternative options for maximizing the positive outcomes of nitrogen fertilizers with regard to farm income and food security, while maintaining environmental sustainability.

Funder

NASA Land-Cover and Land-Use Change (LCLUC) Program

CGIAR Water, Land and Ecosystems (WLE) research program

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3