Expanding number of Western US urban centers face declining summertime air quality due to enhanced wildland fire activity

Author:

Wilmot T YORCID,Hallar A GORCID,Lin J CORCID,Mallia D VORCID

Abstract

Abstract Combining multiple sources of information on atmospheric composition, wildland fire emissions, and fire area burned, we link decadal air quality trends in Western US urban centers with wildland fire activity during the months of August and September for the years 2000–2019. We find spatially consistent trends in extreme levels (upper quantile) of fine particulate matter (PM2.5), organic carbon, and absorption aerosol optical depth centered on the US Pacific Northwest during the month of August. Emerging trends were also found across the Pacific Northwest, western Montana, and Wyoming in September. Furthermore, we identify potential wildfire emission ‘hotspots’ from trends in wildfire derived PM2.5 emissions and burned area. The spatial correspondence between wildfire emissions hotspots and extreme air quality trends, as well as their concomitant spatial shift from August to September supports the hypothesis that wildfires are driving extreme air quality trends across the Western US. We derive further evidence of the influence of wildland fires on air quality in Western US urban centers from smoke induced PM2.5 enhancements calculated through statistical modeling of the PM2.5-meteorology relationship at 18 Western US cities. Our results highlight the significant risk of increased human exposure to wildfire smoke in August at these Western US population centers, while also pointing to the potential danger of emerging trends in Western US population growth, wildfire emissions, and extreme air quality in September.

Funder

Interdisciplinary Exchange for Utah Science at the University of Utah

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3