Landscape position mediates drought vulnerability in California valley oak (Quercus lobata)

Author:

Trumper Matthew LORCID,Griffin DanielORCID,White Michael D

Abstract

Abstract Future climate change will exacerbate drought stress in water-limited ecosystems. However, topography can alter the fine-scale climatic and hydrologic conditions that mediate plant response to meteorological drought. Here, with six new valley oak (Quercus lobata) tree-ring width chronologies, we assess how topography acts as a mediating factor on tree growth and drought sensitivity. Because valley oaks are known to be highly dependent on subsurface water, we predicted that trees growing in riparian sites would be less sensitive to precipitation variability due to greater access to groundwater. Trees were sampled in the Tehachapi Mountains of California across a landscape gradient of sites ranging from 375–1650 m elevation and across upland (55–69 m mean height above nearest drainage) and riparian (2–6 m mean height above the nearest drainage) hillslope positions. Interannual tree growth patterns and drought sensitivity varied substantially in association with hillslope position and elevation. Valley oak radial growth showed a consistently weaker response to precipitation at riparian sites. The influence of hillslope position on drought sensitivity varied with elevation, such that the riparian buffering effect was weakest at sites higher in the watershed and strengthened, progressively, toward the lower elevation sites with greater climatic water deficit. Upland tree growth exhibited a strong response to high-frequency interannual precipitation variability at the high elevation site, whereas trees at lower elevation upland sites responded more to low-frequency decadal trends in precipitation, possibly reflecting hydrogeological processes by which precipitation feeds groundwater lower in the watershed. Our results are consistent with groundwater-dependence of valley oak and indicate that riparian habitats are the most likely refugia for the species during prolonged drought.

Funder

National Science Foundation AGS P2C2

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3