Atlantic Multidecadal Variability modulates the climate impacts of El Niño–Southern Oscillation in Australia

Author:

Trascasa-Castro PalomaORCID,Maycock Amanda CORCID,Ruprich-Robert YohanORCID,Turco MarcoORCID,Staten Paul WORCID

Abstract

Abstract Atlantic Multidecadal Variability (AMV) modulates El Niño–Southern Oscillation (ENSO) dynamics. Here, we explore the effect of warm (AMV+) and cold (AMV−) AMV conditions on the austral summer teleconnection of ENSO to Australia using idealized simulations performed with the NCAR-CESM1 model. AMV+ strengthens the mean and extreme precipitation and temperature responses to El Niño in south-western Australia and weakens the mean precipitation and temperature impacts in north-eastern Australia. The modulation of La Niña impacts by AMV is asymmetric to El Niño, with a weakening of the mean and extreme precipitation and temperature responses in eastern Australia. Decomposing the total difference in ENSO response between AMV phases, we find that the signals are mainly explained by the direct AMV modulation of ENSO and its teleconnections rather than by changes in background climate induced by AMV. The exception is ENSO-driven fire impacts, where there is a significant increase in burned area in south-eastern Australia only when El Niño and AMV+ co-occur. However, modulation of ENSO between AMV+ and AMV− does offset ∼37% of the decrease in burned area extent during La Niña summers. The altered surface climate response to ENSO in Australia by AMV is attributed to variations in large-scale atmospheric circulation. Under AMV+, there is increased subsidence over western Australia during El Niño associated with a westward shift of the local Walker circulation. A weakening of the upwelling branch of the local Hadley circulation over north-eastern Australia is responsible for the weakening of La Niña impacts in AMV+, accompanied by a strengthening of subsidence in south central Australia due to a weakening of the local Hadley circulation, amplifying La Niña impacts over this region. The results suggest the potential for AMV to drive multidecadal variability in ENSO impacts over Australia.

Funder

Natural Environment Research Council

PANORAMA Doctoral Training Partnership

ONFIRE

European Union

Marie Skłodowska-Curie

The Leverhulme Trust

Spanish Ministry of Science, Innovation and Universities

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3