Multidecadal anomalies of Bohai Sea ice cover and potential climate driving factors during 1988–2015

Author:

Yan Yu,Shao Dongdong,Gu Wei,Liu Chengyu,Li Qian,Chao Jinlong,Tao Jun,Xu Yingjun

Abstract

Abstract Despite the backdrop of continuous global warming, sea ice extent has been found not to consistently decrease across the globe, and instead exhibit heterogeneous variability at middle to high latitudes. However, the existing studies are focused primarily on high latitude frozen seas, while studies on the long-term variability of sea ice cover at middle latitudes are generally lacking. Afforded by continuous satellite imagery, evolution of sea ice cover over nearly three decades from 1988 to 2015 in the Bohai Sea as a peculiar mid-latitude frozen sea area is reported for the first time. An anomalous trend of slight overall increase of 1.38 ± 1.00% yr–1 (R = 1.38, i.e. at a statistical significance of 80%) in Bohai Sea ice extent was observed over the 28 year period. The detrended annual average ice area (AAIA) was further found to correlate with a slight decreasing mean ice-period average temperature (IAT, r = –0.58, p < 0.01) of 11 meteorological stations around the Bohai Sea as well as a mild increasing cumulative freezing degree days (CFDD, r = 0.65, p < 0.01). Correlation with decreasing Arctic Oscillation (AO) index (r = –0.60, p < 0.01) and North Atlantic Oscillation (NAO) index (r = –0.69, p < 0.01) over the study period suggested AO and NAO as the primary large-scale climate factors for Bohai Sea ice. In addition, the seasonal cycle of ice cover showed a single peak with longer freezing phase than melting phase, due to the different temperature change rate during the freezing and melting phases. The results can provide important references for monitoring the recent climate change in the region and beyond.

Funder

National Natural Science Foundation of China

Project supported by State Key Laboratory of Earth Surface Processes and Resource Ecology

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3