Energy potentials and water requirements from perennial grasses on abandoned land in the former Soviet Union

Author:

Næss Jan SandstadORCID,Iordan Cristina MariaORCID,Muri HeleneORCID,Cherubini FrancescoORCID

Abstract

Abstract A ramp-up of bioenergy supply is vital in most climate change mitigation scenarios. Using abandoned land to produce perennial grasses is a promising option for near-term bioenergy deployment with minimal trade-offs to food production and the environment. The former Soviet Union (fSU) experienced substantial agricultural abandonment following its dissolution, but bioenergy potentials on these areas and their water requirements are still unclear. We integrate a regional land cover dataset tailored towards cropland abandonment, an agro-ecological crop yield model, and a dataset of sustainable agricultural irrigation expansion potentials to quantify bioenergy potentials and water requirements on abandoned land in the fSU. Rain-fed bioenergy potentials are 3.5 EJ yr−1 from 25 Mha of abandoned land, with land-sparing measures for nature conservation. Irrigation can be sustainably deployed on 7–18 Mha of abandoned land depending on water reservoir size, thereby increasing bioenergy potentials with rain-fed production elsewhere to 5.2–7.1 EJ yr−1. This requires recultivating 29–33 Mha combined with 30–63 billion m3 yr−1 of blue water withdrawals. Rain-fed productive abandoned land equals 26%–61% of the projected regional fSU land use for dedicated bioenergy crops in 2050 for 2 °C future scenarios. Sustainable irrigation can bring productive areas up to 30%–80% of the projected fSU land requirements. Unraveling the complex interactions between land availability for bioenergy and water use at local levels is instrumental to ensure a sustainable bioenergy deployment.

Funder

Norges Forskningsråd

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference76 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3