Abstract
Abstract
Peatlands store a significant amount of terrestrial organic carbon in plant biomass and soils. The Spruce and Peatland Responses Under Changing Environments (SPRUCE) project is a warming and elevated carbon dioxide (eCO2) experiment designed to test how the carbon sequestration and storage capacity of peatland ecosystems will respond to climate change. Here, we report changes in the vascular plant community that have occurred during the first five years of SPRUCE. We tracked species composition, diversity, and aboveground net primary production (ANPP) in chambers warmed at a wide range of temperatures (+0, +2.25, +4.5, +6.75, +9 °C), and two CO2 levels (~400 [ambient] and 900 parts per million). We observed an increase in aboveground vascular plant biomass accumulation, due primarily to an increase in shrub abundance. Overall species diversity decreased substantially, likely due in part to shading by increases in shrub density. The main driver of change in the vascular plant community was temperature, with minimal effects of CO2 evident. These results indicate an overall increase in ANPP with warming, but highlight the importance of interactions between direct (warming) and indirect (competition) effects in determining how boreal peatlands will respond to climate change.
Funder
Minnesota Agricultural Experiment Station
Oak Ridge National Laboratory
US Department of Energy
University of Minnesota Department of Geography
USDA Forest Service
University of Minnesota Department of Forest Resources
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献