Cooling hot cities: a systematic and critical review of the numerical modelling literature

Author:

Krayenhoff E ScottORCID,Broadbent Ashley M,Zhao LeiORCID,Georgescu MateiORCID,Middel ArianeORCID,Voogt James AORCID,Martilli Alberto,Sailor David JORCID,Erell Evyatar

Abstract

Abstract Infrastructure-based heat reduction strategies can help cities adapt to high temperatures, but simulations of their cooling potential yield widely varying predictions. We systematically review 146 studies from 1987 to 2017 that conduct physically based numerical modelling of urban air temperature reduction resulting from green-blue infrastructure and reflective materials. Studies are grouped into two modelling scales: neighbourhood scale, building-resolving (i.e. microscale); and city scale, neighbourhood-resolving (i.e. mesoscale). Street tree cooling has primarily been assessed at the microscale, whereas mesoscale modelling has favoured reflective roof treatments, which are attributed to model physics limitations at each scale. We develop 25 criteria to assess contextualization and reliability of each study based on metadata reporting and methodological quality, respectively. Studies have shortcomings with respect to neighbourhood characterization, reporting areal coverages of heat mitigation implementations, evaluation of base case simulations, and evaluation of modelled physical processes relevant to heat reduction. To aid comparison among studies, we introduce two metrics: the albedo cooling effectiveness (ACE), and the vegetation cooling effectiveness (VCE). A sub-sample of 47 higher quality studies suggests that high reflectivity coatings or materials offer ≈0.2 °C–0.6 °C cooling per 0.10 neighbourhood albedo increase, and that trees yield ≈0.3 °C cooling per 0.10 canopy cover increase, for afternoon clear-sky summer conditions. VCE of low vegetation and green roofs varies more strongly between studies. Both ACE and VCE exhibit a striking dependence on model choice and model scale, particularly for albedo and roof-level implementations, suggesting that much of the variation of cooling magnitudes between studies may be attributed to model physics representation. We conclude that evaluation of the base case simulation is not a sufficient prerequisite for accurate simulation of heat mitigation strategy cooling. We identify a three-phase framework for assessment of the suitability of a numerical model for a heat mitigation experiment, which emphasizes assessment of urban canopy layer mixing and of the physical processes associated with the heat reduction implementation. Based on our findings, we include recommendations for optimal design and communication of urban heat mitigation simulation studies.

Funder

NSF Hazards SEES

Natural Sciences and Engineering Research Council of Canada

UWIN

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3