Assessing long-distance atmospheric transport of soilborne plant pathogens

Author:

Brodsky HannahORCID,Calderón Rocío,Hamilton Douglas SORCID,Li Longlei,Miles Andrew,Pavlick RyanORCID,Gold Kaitlin MORCID,Crandall Sharifa GORCID,Mahowald NatalieORCID

Abstract

Abstract Pathogenic fungi are a leading cause of crop disease and primarily spread through microscopic, durable spores adapted differentially for both persistence and dispersal via soil, animals, water, and/or the atmosphere. Computational Earth system models and air pollution models have been used to simulate atmospheric spore transport for aerial-dispersal-adapted (airborne) rust diseases, but the importance of atmospheric spore transport for soil-dispersal-adapted (soilborne) diseases remains unknown. While a few existing simulation studies have focused on intracontinental dispersion, transoceanic and intercontinental atmospheric transport of soilborne spores entrained in agricultural dust aerosols is understudied and may contribute to disease spread. This study adapts the Community Atmosphere Model, the atmospheric component of the Community Earth System Model, to simulate the global transport of the plant pathogenic soilborne fungus Fusarium oxysporum (F. oxy). Our sensitivity study assesses the model’s accuracy in long-distance aerosol transport and the impact of deposition rate on simulated long-distance spore transport in Summer 2020 during a major dust transport event from Northern Sub-Saharan Africa to the Caribbean and southeastern United States (U.S.). We find that decreasing wet and dry deposition rates by an order of magnitude improves representation of long-distance, trans-Atlantic dust transport. Simulations also suggest that a small number of spores can survive trans-Atlantic transport to be deposited in agricultural zones. This number is dependent on source spore parameterization, which we improved through a literature search to yield a global map of F. oxy spore distribution in source agricultural soils. Using this map and aerosol transport modeling, we show how potentially viable spore numbers in the atmosphere decrease with distance traveled and offer a novel danger index for modeled viable spore deposition in agricultural zones. Our work finds that intercontinental transport of viable spores to cropland is greatest between Eurasia, North Africa, and Sub-Saharan Africa, suggesting that future observational studies should concentrate on these regions.

Funder

National Aeronautics and Space Administration

Computational and Information Systems Laboratory

Jet Propulsion Laboratory

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3