Weakening seasonality of Indo-Pacific warm pool size in a warming world since 1950

Author:

Gan QiuyingORCID,Leung Jeremy Cheuk-HinORCID,Wang LeiORCID,Zhang BanglinORCID

Abstract

Abstract Seasonal variation of the Indo-Pacific warm pool (IPWP) plays an important role in oceanographic and climatological processes. While expansion of the IPWP under greenhouse warming has been widely discussed, the response of IPWP seasonality to climate change has received limited attention. In this study, we found an obvious seasonal diversity in expansion of the IPWP from 1950 to 2020, with a maximum (minimum) expansion trend of 0.28 × 107 km2/decade in winter (0.17 × 107 km2/decade in spring), which consequently reduces the seasonality amplitude of the variation in IPWP size. This is primarily attributed to the seasonal difference in the climatological spatial sea surface temperature (SST) pattern over the Indo-Pacific Ocean, especially that over the tropical Indian Ocean, which determines the capacity for IPWP expansion. Heat budget analyses show that the seasonal shortwave radiation and latent heat fluxes are the major factors controlling the capacity for change in IPWP size across seasons. The presented analyses emphasize the significant weakening of the seasonality of IPWP size, which may have great impacts on the ecological environment of the IPWP and the tropical climate system, and remind us that the intrinsic properties of the climate background of Indo-Pacific SST hold important clues about IPWP expansion under climate change.

Funder

Guangdong Province Introduction of Innovative R&D Team

Southern Marine Science and Engineering Guangdong Laboratory

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3