Global sustainability scenarios lead to regionally different outcomes for terrestrial biodiversity

Author:

Ambrósio GeandersonORCID,Doelman Jonathan CORCID,Schipper Aafke MORCID,Stehfest ElkeORCID,van Vuuren DetlefORCID

Abstract

Abstract Mitigating climate change (CC) and reversing biodiversity decline are urgent and interconnected global priorities. Strategies to address both crises must consider the relationships, synergies and trade-offs between key response measures, including sustainable production and consumption patterns, protected areas (PAs) and climate mitigation policy (CP). In this paper, we review a large set of scenarios (n = 96) from the Integrated Model to Assess the Global Environment (IMAGE) describing future development of land use, greenhouse gas emissions and their impact on CC and biodiversity. We calculate the global mean temperature increase (GMTI) and the Mean Species Abundance (MSA) of plants, a metric indicative of local terrestrial biodiversity intactness. The set includes scenarios with and without specific CP to address CC, PA for biodiversity and demand and supply sustainability measures such as increased energy efficiency and reduced meat consumption. Our findings indicate that scenarios with integrated measures can prevent biodiversity loss at the global scale, yet with clear regional differences. By 2050, 15 out of 30 (50%) scenarios with at least 30% of global land as PAs show positive MSA changes in grasslands and tropical non-forests (Grass & TnF), but only 1 (3%) does so in tropical forests (TF). We demonstrate that pasture and food/feed crops are the main drivers of MSA loss in Grass & TnF and that scenarios with high levels of PAs prevent land conversion and increase biodiversity. By 2100, 28 out of 46 (60%) scenarios with mitigation measures to restrict CC to 2 °C or less in 2100 result in positive MSA changes in TF, but only 13 (28%) do so in Grass & TnF, reflecting the larger impacts of land use change in the latter region. These results underscore the importance of time and regionally-tailored approaches to address the biodiversity and CC crises.

Funder

Excellent Science Programme

European Research Council

Publisher

IOP Publishing

Reference48 articles.

1. GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss;Alkemade;Ecosystems,2009

2. IMAGE-Land MSA tool;Ambrósio,2024

3. Biodiversity and ecosystem productivity: implications for carbon storage;Catovsky;Oikos,2002

4. First draft of the Post-2020 global biodiversity framework;CBD,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3