Expanding wildland-urban interface alters forest structure and landscape context in the northern United States

Author:

Sonti Nancy FORCID,Riemann RachelORCID,Mockrin Miranda H,Domke Grant MORCID

Abstract

Abstract The wildland-urban interface (WUI), where housing intermingles with wildland vegetation, is the fastest-growing land use type in the United States. Given the ecological and social benefits of forest ecosystems, there is a growing need to more fully understand how such development alters the landscape context and structure of these WUI forests. In a space-for-time analysis we utilized land cover data, forest inventory plots, and housing density data over time to examine differences in forest characteristics of the northern US across three WUI change classes: (a) forest that has been in WUI housing density levels since at least 1990 (old-WUI), (b) forest where development crossed the WUI housing density threshold after 1990 (new-WUI), and (c) forest with little to no housing development (non-WUI). Of the 184 million acres of forest in the study area, 34 million acres (19%) were in old-WUI, 12 million acres (7%) were new-WUI, and 136 million acres (74%) were non-WUI. In general, as areas transitioned from non-WUI to newer WUI to older more established WUI, the forest was associated with decreased spatial integrity, increased forest-developed edges, and lower proportions of forest in the surrounding landscape. Forest in the WUI had greater carbon storage, with greater aboveground biomass, relative stand density, and more live trees per hectare than non-WUI forest, suggesting greater capacity to sequester carbon compared to non-WUI forest. At the same time, WUI forest also had significantly reduced structural diversity compared to non-WUI forest, with fewer saplings, seedlings, and dead trees per hectare. Forest that more recently crossed the WUI housing density threshold appeared to be on a trajectory towards that of old-WUI forest. These differences in forest structure across the northern US suggest reduced capacity for forest regeneration in the WUI and the potential for changes in other ecological functions.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference80 articles.

1. Emerald ash borer impacts on visual preferences for urban forest recreation settings;Arnberger;Urban For. Urban Green.,2017

2. Deer and invasive plant species suppress forest herbaceous communities and canopy tree regeneration;Aronson;Nat. Areas J.,2011

3. Human-started wildfires expand the fire niche across the United States;Balch;Proc. Natl Acad. Sci.,2017

4. Biotic and abiotic effects of human settlements in the wildland–urban interface;Bar-Massada;Bioscience,2014

5. The enhanced forest inventory and analysis program—national sampling design and estimation procedures;Bechtold,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3