Evidence for multi-decadal fuel buildup in a large California wildfire from smoke radiocarbon measurements

Author:

Odwuor AORCID,Yañez C CORCID,Chen YORCID,Hopkins F MORCID,Moreno AORCID,Xu XORCID,Czimczik C IORCID,Randerson J TORCID

Abstract

Abstract In recent decades, there has been a significant increase in annual area burned in California’s Sierra Nevada mountains. This rise in fire activity has prompted the need to understand how historical forest management practices affect fuel composition and emissions. Here we examined the total carbon (TC) concentration and radiocarbon abundance (Δ14C) of particulate matter (PM) emitted by the KNP Complex Fire, which occurred during California’s 2021 wildfire season and affected several groves of giant sequoia trees in the southern Sierra Nevada. During a 26 h sampling period, we measured concentrations of fine airborne PM (PM2.5), as well as dry air mole fractions of carbon monoxide (CO) and methane (CH4), using a ground-based mobile laboratory. We also collected filter samples of PM2.5 for analysis of TC concentration and Δ14C. High correlation among PM2.5, CO, and CH4 time series confirmed that our PM2.5 measurements captured variability in wildfire emissions. Using a Keeling plot approach, we determined that the mean Δ14C of PM2.5 was 111.6 ± 7.7‰ (n = 12), which was considerably enriched relative to atmospheric carbon dioxide in the northern hemisphere in 2021 (−3.2 ± 1.4‰). Combining these Δ14C data with a steady-state one-box ecosystem model, we estimated that the mean age of fuels combusted in the KNP Complex Fire was 40 years, with a range of 29–57 years. These results provide evidence for emissions originating from woody biomass, larger-diameter fine fuels, and coarse woody debris that have accumulated over multiple decades. This is consistent with independent field observations that indicate high fire intensity contributed to widespread giant sequoia mortality. With the expanded use of prescribed fires planned over the next decade in California to mitigate wildfire impacts, our measurement approach has the potential to provide regionally-integrated estimates of the effectiveness of fuel treatment programs.

Funder

NASA Modeling, Analysis, and Prediction Program

National Science Foundation Graduate Research Fellowship Program

Ralph J. and Carol. M. Cicerone Chair in the Department of Earth System Science

U.S. Department of Energy Office of Science’s RUBISCO Science Focus Area

NASA Earth Information System – Fire

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3