Source decomposition of eddy-covariance CO2 flux measurements for evaluating a high-resolution urban CO2 emissions inventory

Author:

Wu KaiORCID,Davis Kenneth JORCID,Miles Natasha L,Richardson Scott J,Lauvaux Thomas,Sarmiento Daniel P,Balashov Nikolay V,Keller KlausORCID,Turnbull Jocelyn,Gurney Kevin R,Liang Jianming,Roest Geoffrey

Abstract

Abstract We present the comparison of source-partitioned CO2 flux measurements with a high-resolution urban CO2 emissions inventory (Hestia). Tower-based measurements of CO and 14C are used to partition net CO2 flux measurements into fossil and biogenic components. A flux footprint model is used to quantify spatial variation in flux measurements. We compare the daily cycle and spatial structure of Hestia and eddy-covariance derived fossil fuel CO2 emissions on a seasonal basis. Hestia inventory emissions exceed the eddy-covariance measured emissions by 0.36 µmol m−2 s−1 (3.2%) in the cold season and 0.62 µmol m−2 s−1 (9.1%) in the warm season. The daily cycle of fluxes in both products matches closely, with correlations in the hourly mean fluxes of 0.86 (cold season) and 0.93 (warm season). The spatially averaged fluxes also agree in each season and a persistent spatial pattern in the differences during both seasons that may suggest a bias related to residential heating emissions. In addition, in the cold season, the magnitudes of average daytime biological uptake and nighttime respiration at this flux site are approximately 15% and 27% of the mean fossil fuel CO2 emissions over the same time period, contradicting common assumptions of no significant biological CO2 exchange in northern cities during winter. This work demonstrates the effectiveness of using trace gas ratios to adapt eddy-covariance flux measurements in urban environments for disaggregating anthropogenic CO2 emissions and urban ecosystem fluxes at high spatial and temporal resolution.

Funder

National Institute of Standards and Technology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3