Decarbonizing US passenger vehicle transport under electrification and automation uncertainty has a travel budget

Author:

Alarfaj Abdullah FORCID,Griffin W MichaelORCID,Samaras ConstantineORCID

Abstract

Abstract The transportation sector is at the beginning of a transition represented by electrification, shared mobility, and automation, which could lead to either increases or decreases in total travel and energy use. Understanding the factors enabling deep decarbonization of the passenger vehicle sector is essential for planning the required infrastructure investments and technology adoption policies. We examine the requirements for meeting carbon reduction targets of 80% and higher for passenger vehicle transport in the United States (US) by midcentury under uncertainty. We model the changes needed in vehicle electrification, electricity carbon intensity, and travel demand. Since growth in fleet penetration of electric vehicles (EVs) is constrained by fleet stock turnover, we estimate the EV penetration rates needed to meet climate targets. We find for a base case level of passenger vehicle travel, midcentury deep decarbonization of US passenger transport is conditional on reducing the electricity generation carbon intensity to close to zero along with electrification of about 67% or 84% of vehicle travel to meet decarbonization targets of 80% or 90%, respectively. Higher electricity generation carbon intensity and degraded EV fuel economy due to automation would require higher levels of fleet electrification and/or further constrain the total vehicle travel allowable. Transportation deep decarbonization not only depends on electricity decarbonization, but also has a total travel budget, representing a maximum total vehicle travel threshold that still enables meeting a midcentury climate target. This makes encouraging ride sharing, reducing total vehicle travel, and increasing fuel economy in both human-driven and future automated vehicles increasingly important to deep decarbonization.

Funder

NSF

Argonne National Laboratory

Aramco Services Company

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference79 articles.

1. Communication of long-term strategies (Bonn: UN Clim. Change),2018

2. Fifth assessment report - mitigation of climate change,2014

3. The Intergovernmental Panel on Climate Change,2018

4. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target;Tong;Nature,2019

5. Energy system transformations for limiting end-of-century warming to below 1.5 °C;Rogelj;Nat. Clim. Change,2015

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3