Intensification of fire regimes and forest loss in the Território Indígena do Xingu

Author:

Silvério Divino VORCID,Oliveira Robson SantanaORCID,Flores Bernardo MonteiroORCID,Brando Paulo MORCID,Almada Hellen KeziaORCID,Furtado Marco TúlioORCID,Moreira Fabio GarciaORCID,Heckenberger Michael,Ono Katia YukariORCID,Macedo Marcia NORCID

Abstract

Abstract The contemporary fire regime of southern Amazonian forests has been dominated by interactions between droughts and sources of fire ignition associated with deforestation and slash-and-burn agriculture. Until recently, wildfires have been concentrated mostly on private properties, with protected areas functioning as large-scale firebreaks along the Amazon’s agricultural frontier. However, as the climate changes, protected forests have become increasingly flammable. Here, we have quantified forest degradation in the Território Indígena do Xingu (TIX), an iconic area of 2.8 million hectares where over 6000 people from 16 different ethnic Indigenous groups live across 100 villages. Our main hypothesis was that forest degradation, defined here as areas with lower canopy cover, inside the TIX is increasing due to pervasive sources of fire ignition, more frequent extreme drought events, and changing slash-and-burn agricultural practices. Between 2001 and 2020, nearly 189 000 hectares (∼7%) of the TIX became degraded by recurrent drought and fire events that were the main factors driving forest degradation, particularly in seasonally flooded forests. After three fire events, the probability of forest loss was higher in seasonally flooded areas (63%) compared to upland areas (41%). Given the same fire frequency, areas that have not suffered with extreme droughts showed a 24% lower probability of forest loss compared to areas that experienced three drought events. Distance from villages and human density also had a marked effect on forest cover loss, which was generally higher in areas close to the largest villages. In one of the most culturally diverse Indigenous lands of the Amazon, in a landscape highly threatened by deforestation, our findings demonstrate that climate change may have already exceeded the conditions to which the system has adapted.

Funder

Gordon and Betty Moore Foundation

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3