Significant carbonate burial in The Bahamas seagrass ecosystem

Author:

Fu ChuanchengORCID,Frappi SofiaORCID,Havlik Michelle Nicole,Howe Wells,Harris S David,Laiolo ElisaORCID,Gallagher Austin JORCID,Masqué PereORCID,Duarte Carlos MORCID

Abstract

Abstract Seagrass meadows store significant amounts of carbonate (CaCO3) in sediment, contributing to coastal protection but potentially offsetting their effectiveness as carbon sinks. Understanding the accumulation of CaCO3 and its balance with organic carbon (Corg) in seagrass ecosystems is crucial for developing seagrass-based blue carbon strategies for climate change mitigation. However, CaCO3 accumulation in seagrass meadows varies significantly across geographic regions, with notable data gaps in the Caribbean and Central America. Here, we sampled 10 seagrass meadows across an extensive island chain in The Bahamas, part of the largest seagrass ecosystem and one of the largest CaCO3 banks globally, to evaluate CaCO3 stock, accumulation rate, and its balance with Corg sequestration. Seagrass meadows in The Bahamas store 6405–8847 Tg of inorganic carbon (Cinorg) in the upper meter sediment, with an annual accumulation rate of 38.3–52.9 Tg of Cinorg, highlighting these meadows as hotspots for CaCO3 burial. CaCO3 contributes 67 ± 8% (mean ± standard error) of the sediment accumulation, indicating its important role in seabed elevation. Sediment Cinorg showed no significant relationship with Corg, with an average Corg : Cinorg ratio of 0.069 ± 0.002, ∼ 10 times lower than the threshold (Corg : Cinorg ratio of about 0.63) at which seagrass ecosystem transition from CO2 sources to sinks. However, the available air–sea gas flux measurement was only 1/5 of the calculated CO2 emission expected from calcification, suggesting that part of the accumulated CaCO3 is supported by allochthonous inputs. Furthermore, no perceivable relationship between seagrass density and either CaCO3 stock or accumulation rate was observed, indicating that seagrass may play a limited role in supporting CaCO3 production. Further studies on water chemistry, calcification rate, air–sea CO2 flux, and comparison between seagrass and unvegetated habitats are required to elucidate the carbon budget of this globally significant ecosystem.

Funder

Doris Matsui, Code Blue Foundation

Disney

The Barry and Mimi Sternlicht Foundation, Pacific Treasure Foundation

King Abdullah University of Science and Technology

Pictet Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3