Abstract
Abstract
Process-based agroecosystem models are powerful tools to assess performance of managed landscapes, but their ability to accurately represent reality is limited by the types of input data they can use. Ensuring these models can represent cropping field heterogeneity and environmental impact is important, especially given the growing interest in using agroecosystem models to quantify ecosystem services from best management practices and land use change. We posited that augmenting process-based agroecosystem models with additional field-specific information such as topography, hydrologic processes, or independent indicators of yield could help limit simulation artifacts that obscure mechanisms driving observed variations. To test this, we augmented the agroecosystem model Agricultural Production Systems Simulator (APSIM) with field-specific topography and satellite imagery in a simulation framework we call Foresite. We used Foresite to optimize APSIM yield predictions to match those created from a machine learning model built on remotely sensed indicators of hydrology and plant productivity. Using these improved subfield yield predictions to guide APSIM optimization, total
N
O
3
−
N
loss estimates increased by 39% in maize and 20% in soybeans when summed across all years. In addition, we found a disproportionate total amount of leaching in the lowest yielding field areas vs the highest yielding areas in maize (42% vs 15%) and a similar effect in soybeans (31% vs 20%). Overall, we found that augmenting process-based models with now-common subfield remotely sensed data significantly increased values of predicted nutrient loss from fields, indicating opportunities to improve field-scale agroecosystem simulations, particularly if used to calculate nutrient credits in ecosystem service markets.
Funder
Iowa Agriculture and Home Economics Experiment Station
The Iowa State University Presidential Interdisciplinary Research Initiative
Foundation for Food and Agriculture Research
Iowa Nutrient Research Center
National Science Foundation
USDA National Institute of Food and Agriculture
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献