Augmenting agroecosystem models with remote sensing data and machine learning increases overall estimates of nitrate-nitrogen leaching

Author:

Nowatzke MatthewORCID,Damiano LuisORCID,Miguez Fernando EORCID,McNunn Gabe S,Niemi JaradORCID,Schulte Lisa AORCID,Heaton Emily AORCID,VanLoocke AndyORCID

Abstract

Abstract Process-based agroecosystem models are powerful tools to assess performance of managed landscapes, but their ability to accurately represent reality is limited by the types of input data they can use. Ensuring these models can represent cropping field heterogeneity and environmental impact is important, especially given the growing interest in using agroecosystem models to quantify ecosystem services from best management practices and land use change. We posited that augmenting process-based agroecosystem models with additional field-specific information such as topography, hydrologic processes, or independent indicators of yield could help limit simulation artifacts that obscure mechanisms driving observed variations. To test this, we augmented the agroecosystem model Agricultural Production Systems Simulator (APSIM) with field-specific topography and satellite imagery in a simulation framework we call Foresite. We used Foresite to optimize APSIM yield predictions to match those created from a machine learning model built on remotely sensed indicators of hydrology and plant productivity. Using these improved subfield yield predictions to guide APSIM optimization, total N O 3 N loss estimates increased by 39% in maize and 20% in soybeans when summed across all years. In addition, we found a disproportionate total amount of leaching in the lowest yielding field areas vs the highest yielding areas in maize (42% vs 15%) and a similar effect in soybeans (31% vs 20%). Overall, we found that augmenting process-based models with now-common subfield remotely sensed data significantly increased values of predicted nutrient loss from fields, indicating opportunities to improve field-scale agroecosystem simulations, particularly if used to calculate nutrient credits in ecosystem service markets.

Funder

Iowa Agriculture and Home Economics Experiment Station

The Iowa State University Presidential Interdisciplinary Research Initiative

Foundation for Food and Agriculture Research

Iowa Nutrient Research Center

National Science Foundation

USDA National Institute of Food and Agriculture

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3