Hydrological regimes explain the seasonal predictability of streamflow extremes

Author:

Du YihengORCID,Clemenzi IlariaORCID,Pechlivanidis Ilias GORCID

Abstract

Abstract Advances in hydrological modeling and numerical weather forecasting have allowed hydro-climate services to provide accurate impact simulations and skillful forecasts that can drive decisions at the local scale. To enhance early warnings and long-term risk reduction actions, it is imperative to better understand the hydrological extremes and explore the drivers for their predictability. Here, we investigate the seasonal forecast skill of streamflow extremes over the pan-European domain, and further attribute the discrepancy in their predictability to the local river system memory as described by the hydrological regimes. Streamflow forecasts at about 35 400 basins, generated from the E-HYPE hydrological model driven with bias-adjusted ECMWF SEAS5 meteorological forcing input, are explored. Overall the results show adequate predictability for both hydrological extremes over Europe, despite the spatial variability in skill. The skill of high streamflow extreme deteriorates faster as a function of lead time than that of low extreme, with a positive skill persisting up to 12 and 20 weeks ahead for high and low extremes, respectively. A strong link between the predictability of extremes and the underlying local hydrological regime is identified through comparative analysis, indicating that systems of analogous river memory, e.g. fast or slow response to rainfall, can similarly predict the high and low streamflow extremes. The results improve our understanding of the geographical areas and periods, where the seasonal forecasts can timely provide information on very high and low streamflow conditions, including the drivers controlling their predictability. This consequently benefits regional and national organizations to embrace seasonal prediction systems and improve the capacity to act in order to reduce disaster risk and support climate adaptation.

Funder

Swedish Energy Agency

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3