Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning

Author:

ElGhawi RedaORCID,Kraft Basil,Reimers Christian,Reichstein MarkusORCID,Körner MarcoORCID,Gentine PierreORCID,Winkler Alexander JORCID

Abstract

Abstract The process of evapotranspiration transfers liquid water from vegetation and soil surfaces to the atmosphere, the so-called latent heat flux ( Q LE ), and modulates the Earth’s energy, water, and carbon cycle. Vegetation controls Q LE by regulating leaf stomata opening (surface resistance r s in the Big Leaf approach) and by altering surface roughness (aerodynamic resistance r a ). Estimating r s and r a across different vegetation types is a key challenge in predicting Q LE . We propose a hybrid approach that combines mechanistic modeling and machine learning for modeling Q LE . The hybrid model combines a feed-forward neural network which estimates the resistances from observations as intermediate variables and a mechanistic model in an end-to-end setting. In the hybrid modeling setup, we make use of the Penman–Monteith equation in conjunction with multi-year flux measurements across different forest and grassland sites from the FLUXNET database. This hybrid model setup is successful in predicting Q LE , however, this approach leads to equifinal solutions in terms of estimated physical parameters. We follow two different strategies to constrain the hybrid model and therefore control for the equifinality that arises when the two resistances are estimated simultaneously. One strategy is to impose an a priori constraint on r a based on mechanistic assumptions (theory-driven strategy), while the other strategy makes use of more observational data and adds a constraint in predicting r a through multi-task learning of both latent and sensible heat flux ( Q H ; data-driven strategy) together. Our results show that all hybrid models predict the target variables with a high degree of success, with R 2 = 0.82–0.89 for grasslands and R 2 = 0.70–0.80 for forest sites at the mean diurnal scale. The predicted r s and r a show strong physical consistency across the two regularized hybrid models, but are physically implausible in the under-constrained hybrid model. The hybrid models are robust in reproducing consistent results for energy fluxes and resistances across different scales (diurnal, seasonal, and interannual), reflecting their ability to learn the physical dependence of the target variables on the meteorological inputs. As a next step, we propose to test these heavily observation-informed parameterizations derived through hybrid modeling as a substitute for ad hoc formulations in Earth system models.

Funder

European Research Council (ERC) Synergy Grant “Understanding and modeling the Earth System with Machine Learning (USMILE)”

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3