The trend shift caused by ecological restoration accelerates the vegetation greening of China’s drylands since the 1980s

Author:

Li Zidong,Wang Shuai,Li Changjia,Ye Chongchong,Gao Dexin,Chen PengORCID

Abstract

Abstract Satellite observations since the early 1980s have revealed a trend of ‘Earth greening’ across global terrestrial ecosystems. Dryland vegetation is more sensitive to climate change and human activities. China’s drylands are among the largest in extent worldwide, and large-scale ecological restoration of these areas has been implemented since the late 1970s, which has resulted in more complicated but still poorly quantified vegetation dynamics. To figure out the vegetation dynamics and associated driving forces, we provide an assessment of the vegetation dynamics from 1982 to 2015 using the CO2 fertilization effect function, principal component regression, Residual Trend analysis, and Breaks For Additive Seasonal and Trend methods based on the ERA5 climate factors and GIMMS 3.1 normalized difference vegetation index datasets. This study shows that anthropogenic impacts and CO2 fertilization have jointly led to vegetation greening in China’s drylands since the 1980s, and ecological restoration has accelerated this greening since the 2000s. The results show that the vegetation greening in China’s drylands (41.51% of the study area, +0.60 × 10−3 yr−1) is mainly driven by CO2 fertilization (+0.55 × 10−3 yr−1) and anthropogenic activities (+0.12 × 10−3 yr−1). The anthropogenic effects are especially higher on the Loess Plateau (+1.01 × 10−3 yr−1) and the Three-North region (+0.23 × 10−3 yr−1). The vegetation dynamics shifts in 6.73% (31.64 Mha) of China’s drylands were directly attributed to anthropogenic impacts around the 2000s. When the anthropogenic effect was intensified, the vegetation dynamics shifted from no change to greening and vice versa, which significantly intensified the vegetation greening since the 1980s. These results capture the processes of ecological programs and provide an assessment of the effects of ecological restoration. This work provides a credible attribution of the vegetation greenness dynamics and trend shifts in China’s drylands, thus facilitating a better understanding of regional environmental change and management.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3