Evaluation of the VOC pollution pattern and emission characteristics during the Beijing resurgence of COVID-19 in summer 2020 based on the measurement of PTR-ToF-MS

Author:

Zhang Zhining,Man Hanyang,Duan Fengkui,Lv Zhaofeng,Zheng Songxin,Zhao Junchao,Huang Feifan,Luo Zhenyu,He Kebin,Liu HuanORCID

Abstract

Abstract A second wave of coronavirus disease 2019 (COVID-19) infections emerged in Beijing in summer 2020, which provided an opportunity to explore the response of air pollution to reduced human activity. Proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) coupled with positive matrix factorization (PMF) source apportionment were applied to evaluate the pollution pattern and capture the detailed dynamic emission characteristics of volatile organic compounds (VOCs) during the representative period, with the occurrence of O3 pollution episodes and the Beijing resurgence of COVID-19. The level of anthropogenic VOC was lower than during the same period in previous years due to the pandemic and emission reduction measures. More than two thirds of the days during the observation period were identified as high-O3 days and VOCs exhibited higher mixing ratios and faster consumption rates in the daytime on high-O3 days. The identified VOC emission sources and the corresponding contributions during the whole observation period included: vehicle + fuel (12.41 ± 9.43%), industrial process (9.40 ± 8.65%), solvent usage (19.58 ± 13.46%), biogenic (6.03 ± 5.40%), background + long-lived (5.62 ± 11.37%), and two groups of oxygenated VOC (OVOC) factors (primary emission and secondary formation, 26.14 ± 15.20% and 20.84 ± 14.0%, respectively). Refined dynamic source apportionment results show that the ‘stay at home’ tendency led to decreased emission (−34.47 ± 1.90%) and a weakened morning peak of vehicle + fuel during the Beijing resurgence. However, a growing emission of primary OVOCs (+51.10 ± 8.28%) with similar diurnal variation was observed in the new outbreak and afterwards, which might be related to the enhanced usage of products intended to clean and disinfect. The present study illustrated that more stringent VOC reduction measures towards pandemic products should be carried out to achieve the balanced emission abatement of NO x and VOC when adhering to regular epidemic prevention and control measures.

Funder

Royal Society of UK through Newton Advanced Fellowship

National Natural Science Foundation of China

Key R&D Program of China

Tsinghua University Initiative Scientific Research Program

Beijing Nova Program

SEE foundation

National Engineering Laboratory for Mobile Source Emission Control Technology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3